Geometric finite difference schemes for the generalized hyperelastic-rod wave equation
نویسندگان
چکیده
Geometric integrators are presented for a class of nonlinear dispersive equations which includes the Camassa-Holm equation, the BBM equation and the hyperelasticrod wave equation. One group of schemes is designed to preserve a global property of the equations: the conservation of energy; while the other one preserves a more local feature of the equations: the multi-symplecticity.
منابع مشابه
Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation
We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.
متن کاملConvergent numerical schemes for the compressible hyperelastic rod wave equation
Abstract We propose a fully discretised numerical scheme for the hyperelastic rod wave equation on the line. The convergence of the method is established. Moreover, the scheme can handle the blow-up of the derivative which naturally occurs for this equation. By using a time splitting integrator which preserves the invariants of the problem, we can also show that the scheme preserves the positiv...
متن کاملMoving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod
In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...
متن کاملH−perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-rod Wave Equation
We consider a weakly dissipative hyperelastic-rod wave equation (or weakly dissipative Camassa–Holm equation) describing nonlinear dispersive dissipative waves in compressible hyperelastic rods. By fixed a smooth solution, we establish the existence of a strongly continuous semigroup of global weak solutions for any initial perturbation from H1(R). In particular, the supersonic solitary shock w...
متن کاملOptimised 25-point finite difference schemes for the three-dimensional wave equation
Wave-based methods are increasingly viewed as necessary alternatives to geometric methods for room acoustics simulations, as they naturally capture wave phenomena like diffraction and interference. For methods that simulate the three-dimensional wave equation—and thus solve for the entire acoustic field in an enclosed space—computational costs can be high, so efficient algorithms are critical. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011